1/9^x=3^x+1

Simple and best practice solution for 1/9^x=3^x+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/9^x=3^x+1 equation:



1/9^x=3^x+1
We move all terms to the left:
1/9^x-(3^x+1)=0
Domain of the equation: 9^x!=0
x!=0/1
x!=0
x∈R
We get rid of parentheses
1/9^x-3^x-1=0
We multiply all the terms by the denominator
-3^x*9^x-1*9^x+1=0
Wy multiply elements
-27x^2-9x+1=0
a = -27; b = -9; c = +1;
Δ = b2-4ac
Δ = -92-4·(-27)·1
Δ = 189
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{189}=\sqrt{9*21}=\sqrt{9}*\sqrt{21}=3\sqrt{21}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-3\sqrt{21}}{2*-27}=\frac{9-3\sqrt{21}}{-54} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+3\sqrt{21}}{2*-27}=\frac{9+3\sqrt{21}}{-54} $

See similar equations:

| -57+21y+9=5(5y-4)-8 | | X^2+4n+4=64 | | 5(m-6)=5(7m-6) | | u^2-9=(24/25)u^2 | | 25+3x=15+4x | | 5|b+8|-7=13 | | 7(c-2)+4=3+c-13 | | 6x=10=1x | | 6(b+2)=3(b-1) | | c^2-7c-14=0 | | -16+3k=k-2k | | 1/3x=1/2=2 | | 40+30x=290-20x | | -6(4m+2)-5m=-7(1+4m) | | 9.12/x=-0.2 | | 35=-5(2x+5) | | -8+8=-7a-8(1-5a) | | p-|5|*|-3|=-20 | | -5/2=3/4x+1/2 | | 6(x+8)=-3(x-43 | | 34+8x=6(1+2x) | | 6=2n–8;7 | | 8(x+4)=8(1+2x)-2x | | 3(7x-2)=28 | | (x+10)=(5x+20) | | |3x+6|=-12 | | 34+8x=6+12x | | z/5-4=13/8 | | 36x3+-10x2+-4x=0 | | 6+2(1-8k)=4(-2k-4) | | 3-12x=7(x-2) | | (x+10)=(5x+10) |

Equations solver categories